> y 3bjbj 7{{+FFtLbbbbbQQQ$v( \?QQQQQ?bbTUUUQ
bbUQUUUbPW3M[Uj0U U UU QQUQQQQQ??UQQQQQQQ QQQQQQQQQFT: Grade 4How will we assess this?Related textbook pages Related additional resources and activitiesOperations and Algebraic Thinking (4.OA)Use the four operations with whole numbers to solve problems.
1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol
for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
Gain familiarity with factors and multiples.4. Find all factor pairs for a whole number in the range 1100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1100 is prime or composite.Generate and analyze patterns.5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule Add 3 & the starting number 1, generate terms in the resulting sequence & observe that the terms appear to alternate between odd & even numbers. Explain informally why the numbers will continue to alternate in this way.Number and Operations in Base Ten (4.NBT) Generalize place value understanding for multi-digit whole numbers.1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 70 = 10 by applying concepts of place value & division.2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.3. Use place value understanding to round multi-digit whole numbers to any place.Use place value understanding and properties of operations to perform multi-digit arithmetic.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.
5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between
multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.Number and OperationsFractions (4.NF) Extend understanding of fraction equivalence and ordering.1. Explain why a fraction a/b is equivalent to a fraction (n a)/(n b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
3. Understand a fraction a/b with a > 1 as a sum of fractions 1/b.
a. Understand addition and subtraction of
fractions as joining and separating parts
referring to the same whole.
b. Decompose a fraction into a sum of
fractions with the same denominator in
more than one way, recording each
decomposition by an equation. Justify
decompositions, e.g., by using a visual
fraction model. Examples: 3/8 = 1/8 +
1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 +
1 + 1/8 = 8/8 + 8/8 + 1/8.
c. Add and subtract mixed numbers with
like denominators, e.g., by replacing
each mixed number with an equivalent
fraction, and/or by using properties of
operations and the relationship
between addition and subtraction.
d. Solve word problems involving addition
and subtraction of fractions referring to
the same whole and having like
denominators, e.g., by using visual
fraction models and equations to
represent the problem.
4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
a. Understand a fraction a/b as a multiple
of 1/b. For example, use a visual
fraction model to represent 5/4 as the
product 5 (1/4), recording the
conclusion by the equation 5/4 = 5
(1/4).
b. Understand a multiple of a/b as a
multiple of 1/b, and use this
understanding to multiply a fraction by
a whole number. For example, use a
visual fraction model to express 3
(2/5) as 6 (1/5), recognizing this
product as 6/5. (In general, n (a/b) =
(n a)/b.)
c. Solve word problems involving
multiplication of a fraction by a whole
number, e.g., by using visual fraction
models and equations to represent the
problem. For example, if each person at
a party will eat 3/8 of a pound of roast
beef, and there will be 5 people at the
party, how many pounds of roast beef
will be needed? Between what two
whole numbers does your answer lie?
Understand decimal notation for fractions, and compare decimal fractions.
5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express 3/10 as
30/100, and add 3/10 + 4/100 = 34/100.
6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.
Measurement and Data (4.MD)Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet & inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using
diagrams such as number line diagrams that feature a measurement scale.
3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.Represent and interpret data.4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
Geometric measurement: understand concepts of angle and measure angles.5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
a. An angle is measured with reference to
a circle with its center at the common
endpoint of the rays, by considering
the fraction of the circular arc between
the points where the two rays intersect
the circle. An angle that turns through
1/360 of a circle is called a one-degree
angle, and can be used to measure
angles.
b. An angle that turns through n one-
degree angles is said to have an angle
measure of n degrees.
6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
7. Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction
problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
Geometry (4.G)Draw and identify lines and angles, and classify shapes by properties of their lines and angles.1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
89[dfȼ}}vgVOE;h2h:35^Jh2hp35^Jh2hx!h2hx56>*B*]phh2h:356>*\^Jh2hA4h2hB}5>*B*\phh2hi5>*B*\phh2h|qh2h|q5PJ\h2hf)J5PJ\h2h|q5CJaJh2h|q5h2h|q5>*B*\phh2h:35>*B*\phh2hA45>*B*\ph!9ed$Ifgd2l$d$Ifa$gd2lefH0000d$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2H0000d$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2 H,,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2& (
JKOQ}~
|͓͢th\h\h\h\h2hp36]^Jh2h:36]^Jh2hP36>*B*ph!h2h>z56>*B*]phh2h:356>*\^Jhp3h2hp3^Jh2h:3B*phh2h>z^Jh2h:35^Jh2hA4!h2h:356>*B*]phh2hx^Jh2h:3^Jh2h:3^J$ 0kdj$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l X
d$Ifgd2ld$7$8$H$Ifgd2l
JKH,,,d$7$8$H$Ifgd2lkd:$$Ifl\,z|)p5N
t0644
lap(yt2KLMNOQ0.kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2lQ~0kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l
d$Ifgd2ld$7$8$H$Ifgd2l
H,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2
0kdh$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l
vwxyd$Ifgd2ld$7$8$H$Ifgd2lvz67z}~^_³~pdZh2hq-5^Jh2hp36]^Jh2h:36PJ ]^J h2hq-6]^Jh2hq-^Jh2h:3^Jh2h:35^Jh2h#56>*^Jh2h:356>*\^Jh2h#h2ht5>*^Jh2h:35>*^Jh2hP35>*^Jh2hA4h2h:36]^JyzH,d$7$8$H$Ifgd2lkd2$$Ifl\,z|)p5N
t0644
lap(yt20kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2ld$Ifgd2ld$7$8$H$Ifgd2lH,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt20kd $$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l%)fg
WX\}~;園znh2ht5>*^Jh2hq-5>*^Jh2hP35>*^Jh2hq-5^Jh2h:3h2ht6>*^Jh2hq-56>*\^Jh2h:356>*\^Jh2hGh2h:35^Jh2hJh2hq-^Jh2h:3^Jh2hp3^J+d$Ifgd2ld$7$8$H$Ifgd2l%H,d$7$8$H$Ifgd2lkdr
$$Ifl\,z|)p5N
t0644
lap(yt2%&'()0kdB$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l)d$Ifgd2ld$7$8$H$Ifgd2lH,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt20kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l d$Ifgd2ld$7$8$H$Ifgd2l
XH,,,d$7$8$H$Ifgd2lkd
$$Ifl\,z|)p5N
t0644
lap(yt2XYZ[\0kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l\d$Ifgd2ld$7$8$H$Ifgd2lH,d$7$8$H$Ifgd2lkdR$$Ifl\,z|)p5N
t0644
lap(yt2
WX56xyGHʵʵʵʵʠh2hp36>*^Jh2hMh2h}5>*^Jh2hq-^Jh2hq-6]^Jh2h}^Jh2hq-^Jh2hq-5^Jh2hJh2hJ56>*^Jh2hq-56>*\^J20kd"$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2ld$Ifgd2ld$7$8$H$Ifgd2lH,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt20kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l
#$%',.JKMQTU{
1;]f"Żh2h}6]^Jh2hq-^Jh2h}^Jh2hq-6]^Jh2h}^Jh2hq-^Jh2hq-5^Jh2hp35^Jh2hJh2h*6>*^Jh2hq-56>*\^Jh2h}56>*\^J2d$Ifgd2ld$7$8$H$Ifgd2l M|H,,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2|2]#Gt/Z[\]d$Ifgd2ld$7$8$H$Ifgd2l"-GKNOs}.8?@YZ^`hdeijlmn'(1<Ľh2hq-5^Jh2hp3h2hp35^Jh2hp3^Jh2hp3^Jhp3h2hq-h2h}^Jh2hq-^Jh2hq-^Jh2h}^Jh2hq-6]^Jh2h}6]^J7]^`HF**d$7$8$H$Ifgd2lkdb$$Ifl\,z|)p5N
t0644
lap(yt2Ddefghd$Ifgd2ld$7$8$H$Ifgd2lhijH,,,d$7$8$H$Ifgd2lkd2$$Ifl\,z|)p5N
t0644
lap(yt22d%X . U !M!~!!!"d$7$8$H$Ifgd2l<cnxz%/Wbqrsvw " % ' . 2 5 6 T ^ úñúñh2h}^Jh2hq-^Jh2hq-^Jh2h}^Jh2h}6PJ ]^J h2hq-6PJ ]^J h2h}6]^Jh2hq-6]^JB !#!/!0!L!V!~!!!!!!!!
""""O"P"Z"["_"`"b"c"d"""""""###U#V#Z#[#]#^###˼||h2h}5^Jh2hq-5^Jh2hp35^Jh2hq-h2hq-6>*^Jh2h}56>*\^Jh2hq-56>*\^Jhp3h2hJh2h}6]^Jh2hq-6]^Jh2hq-^Jh2h}^J0""
""""0.kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l"["\"]"^"d$Ifgd2ld$7$8$H$Ifgd2l^"_"`".#U#H,,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2U#V#W#X#Y#d$Ifgd2ld$7$8$H$Ifgd2lY#Z#[#$
$H,,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2####$
$$$$$$W$Y$$$$$%%&%,%-%1%3%G%I%J%K%L%N%O%S%%%%ĻطpaZh2hMh2hM56>*\^Jh2ha/56>*\^Jh2hJh2ho56>*^Jh2hx5>*^Jh2h}(5>*^Jh2h@[\5>*^Jhp3h2hq-^Jh2hq-5^Jh2hp35^Jh2hq-h2h}^Jh2hq-6]^Jh2h}6]^J!
$$$$$0kdr$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l$$-%.%/%0%d$Ifgd2ld$7$8$H$Ifgd2l0%1%3%O%HF*d$7$8$H$Ifgd2lkdB$$Ifl\,z|)p5N
t0644
lap(yt2O%P%Q%R%S%0kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2lS%%%%%d$Ifgd2ld$7$8$H$Ifgd2l%%''H,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2%%&m'n''''''K)L)M)Q)T))f*j******\+h+i+++++++++.,츬~rrrfh2hJ6]^Jh2hV6]^Jh2hV^Jh2hJ56>*\^Jh2ha/56>*\^Jh2hMh2ha/5\^Jh2h}(^Jh2hkGh2hp35\^Jh2hp36]^Jh2ha/6]^Jh2ha/^Jh2ha/5^J"'''''0kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l'')L)M)N)O)P)d$Ifgd2ld$7$8$H$Ifgd2lP)Q)R)f*H,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2f*g*h*i*j*0kdR$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2lj*****d$Ifgd2ld$7$8$H$Ifgd2l**++H,,d$7$8$H$Ifgd2lkd"$$Ifl\,z|)p5N
t0644
lap(yt2+++++0kd$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l.,/,6,7,;,=,>,,,,,,,,,,-"-#-.-9-^-i-x-y------.. .,.7.Z.e.m.r.u.v............¸h2ha/6]^Jh2ha/^Jh2hV^Jh2hV^Jh2ha/^Jh2hV5^Jh2ha/5^Jh2hkGh2hkG56>*\^Jh2ha/56>*\^Jh2hV56>*\^J3+7,8,9,:,d$Ifgd2ld$7$8$H$Ifgd2l:,;,,,/-H,,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2/-_-----.[.m........d$Ifgd2ld$7$8$H$Ifgd2l........4/5/Q/R/V/X/Z/[///////d0e00000000000!1"1<1ǾǾǾоǾǾǾǾǾǱ䤗teth2hV56>*\^Jh2ha/56>*\^Jh2hMh2hM5>*\^Jh2ha/5>*\^Jh2hG5>*\^Jh2h#o^Jhp3h2hV^Jh2ha/^Jh2ha/5^Jh2hV5^Jh2hkGh2hV5\^Jh2hJ^J$...R/H,,d$7$8$H$Ifgd2lkd$$Ifl\,z|)p5N
t0644
lap(yt2R/S/T/U/V/X/0.kdb $$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2lX/&000000d$Ifgd2ld$7$8$H$Ifgd2l000H,d$7$8$H$Ifgd2lkd2!$$Ifl\,z|)p5N
t0644
lap(yt2000000kd"$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l0=1>1?1@1d$Ifgd2ld$7$8$H$Ifgd2l<1=1A1C1D1E1111111111111,2-2u2v222222222233`3a3333333ŹŹh|qh2hV5^Jh2hV5\^Jh2hV4^Jh2hV^Jh2ha/^Jh2ha/5^Jh2hMh2hM56>*\^J(@1A111H,,d$7$8$H$Ifgd2lkd"$$Ifl\,z|)p5N
t0644
lap(yt2111110kd#$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l1122222d$Ifgd2ld$7$8$H$Ifgd2l2223H,,d$7$8$H$Ifgd2lkdr$$$Ifl\,z|)p5N
t0644
lap(yt2333330kdB%$$Ifl\,z|)p5N
t0644
lap(yt2d$Ifgd2l33gdp351h0:p~a= /!8"8#8$8%$$If!vh#v#vN#v
#v:Vl
t0655N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t0655N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t0655N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t0655N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t0655N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2$$If!vh#v#vN#v
#v:Vl
t06,55N5
5p(yt2f666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~OJQJ_HmH nH sH tH J`Jl\NormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRi@R
0Table Normal4
l4a(k (
0No Listt`t|q
Table Grid7:V0d@@p3 List Paragraph ^m$PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3ڗP
1Pm\\9Mؓ2aD];Yt\[x]}Wr|]g-
eW
)6-rCSj
id DЇAΜIqbJ#x꺃6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8քAV^f
Hn-"d>znǊ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QDDcpU'&LE/pm%]8firS4d7y\`JnίIR3U~7+#mqBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCMm<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
+"< #%.,.<13)/;@DIJPW_cje
KQ
y%) X\|]h""^"U#Y#
$$0%O%S%%''P)f*j**++:,/-.R/X/000@1112333 !"#$%&'(*+,-.0123456789:<=>?ABCEFGHKLMNOQRSTUVXYZ[\]^`abdefghiklmnopL#@0(
B
S ?+X[
fs8?MVbc!!%%e&k&&&&(.(+33333333333333333333 X W@$/Gu!P=;2`_ir{dr]m-z=g=N #V4JG4%V0a)*q-a/2p3=1>rZFkGHf)J~K@[\[j|qvB}}~i~ad#oA4x>zF:3P3.&zy%8l\R)M}]tJ}(o x++@+x@UnknownG* Times New Roman5Symbol3.* Arial7.@ Calibri?Gotham-Bold?Gotham-Book;"HelveticaK Gotham-BookItalicC Gotham-Medium_Helvetica-ObliqueMS MinchoACambria Math"hccnFuB$ uB$ !88n20++OHP $P|q2!
xxJoan Barrett
S. A. WalthesOh+'0T
(4<DLJoan BarrettNormal.dotmS. A. Walthes2Microsoft Office Word@@t@3M@3M uB$՜.+,D՜.+,D
px
Microsoft`n+TitleH9AQGoogle.Documents.TrackingGoogle.Documents.DocumentIdGoogle.Documents.RevisionId$Google.Documents.PreviousRevisionIdGoogle.Documents.PluginVersion(Google.Documents.MergeIncapabilityFlagstrue01g6EBVoc7iJ5T3F-BuIH5P0rrpbrq5beFHJN0WOtV9mI04832430519997220728046526321432002973462.0.2154.5604
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqstuvwxyz{|}~Root Entry F`3MData
r&1Table WordDocument7SummaryInformation(DocumentSummaryInformation8CompObjr
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q